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Abstract. MIDAS regression model is a time series model that can be used to model the data 

with different frequencies or mixed frequencies without losing information from the data.  In 

this paper, we discuss the MIDAS regression model using Exponential Almon function and 

compare its performance with the distributed lag model. We also apply the model for 

forecasting purpose. For empirical study, we apply the model to forecast Indonesian Gross 

Domestic Product (GDP) data. Compared to the distributed lag model, it turns out that the 

MIDAS regression model gives a smaller error value in forecasting GPD. 

1.  Introduction 

The frequency difference in time series data has been a challenge for researchers who work on time 

series analysis, especially on time series regression. This is because time series regression involves 

independent and dependent variables with the same frequencies. 

A common solution to solving the issue of data with different frequencies is to transform the data 

so that the dependent and independent variables have the same frequencies. However, this 

transformation process may cause some lost useful information and difficulties on detecting variable. 

In 2004, Ghysels, Santa-Clara, and Valkanov found a model that can overcome the issue of time 

series data with different frequencies or mixed frequencies without losing information from the data 

[2]. This model is called Mixed Data Sampling (MIDAS) regression model. The advantages of 

MIDAS regression model in addition to overcoming the problem of data with mixed frequency is to 

minimize the parameters being estimated and make the regression model become simpler. The 

MIDAS regression model can retain information in different data frequencies between dependent and 

independent variables and reduce the number of parameters being estimated. Therefore, this model is 

more appropriate for forecasting in comparison with other classical models. 

In this paper, we apply the MIDAS regression model to forecast the Indonesian GDP growth using 

the return of the Jakarta Composite Index (JCI). This is based on the fact that the macroeconomic 

variables are important indicators of economic growth, but usually, the variable macroeconomic data 

are in low frequencies, such as the quarterly period for GDP, monthly inflation, and monthly 

employment growth. On the other hand, the financial variables such as the return of JCI which 

contains useful information for future economic growth [5]. 
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The first section of this paper describe the background of the research, while the second section 

discuss about method used in this research. The third section explains the source of data and tools for 

analyzing the data. The empirical results and discussions are then provided in the fourth section. 

Finally, the conclusions are presented in fifth section respectively. 

 

2.  Method 

One of the main objectives of the MIDAS regression model is to deal with the problem of frequency 

differences between dependent and independent variables without having to eliminate important 

information from both variables. The implementation of this MIDAS regression model is to forecast 

quarterly Indonesian GDP using its own lags and monthly return of JCI. 

After fitting the MIDAS regression model and distributed lag model, the selected model is the 

model with smaller mean square error. The MIDAS regression model has a particular shape associated 

with the polynomial weight function specification. The polynomial weighting function is used to help 

incorporate independent variables that have a high frequency in the MIDAS regression model. 

In the MIDAS regression model, the dependent variable Yt is assumed to have a fixed frequency or 

period, called as the interval of reference. Meanwhile, the independent variable Xt
(m)

 has a higher 

frequency. Let Yt have a quarterly frequency, then at least Xt
(m)

 has a monthly frequency where m =
3. 

The following equation is the form of the MIDAS regression model: 

 

Yt = β0 + β1 (b(0; θ)Xt−0/m
(m)

+ b(1; θ)Xt−1/m
(m)

+ ⋯ + b(K − 1; θ)Xt−(K−1)/m
(m)

) + εt
(m)

 (1) 

 

where t = 1, 2, … , T, with the parameter β1 contains the overall impact of the lag  Xt
(m)

 from Yt, 

whereas ε is a model error that is normally distribution. Standardizing lag operator, the model (1) can 

be written as follows: 

 

Yt = β0 + β1B(L1/m; θ)Xt
(m)

+ εt
(m)

    (2) 

 

where B(L1/m; θ) = ∑ b(k; θ)K−1
k=0 Lk/m must sum to one and L1/m is lag operator. 

The determination of the parameters of the weighting function b(k; θ) becomes important in the 

MIDAS regression model. The use of weight function in MIDAS regression aims to maintain the 

simplicity of the model. 

The weight function used is called an Exponential Almon since it is closely related to the Almon 

polynomial function in the distributed lag model [3]. Ghysels, Santa-Clara, and Valkanov suggested 

using two parameters of theta θ = (θ1, θ2). Various shapes can be made for weighting functions with 

two parameters, including descending, rising, or single hump shape. The Exponential Almon 

weighting function is expressed as follows: 

 

b(k; θ) =
exp(θ1k+θ2k2)

∑ exp(θ1l+θ2l2)K−1
l=0

. 

 

Therefore, equation (2) is written as 

  Yt = β0 + β1 [∑
exp(θ1k+θ2k2)

∑ exp(θ1l+θ2l2)K−1
l=0

K−1
k=0 ] Lk/mXt

(m)
+ εt

(m)
.  (3) 

 

From the Exponential Almon weight function, then the lag selection will be used in the MIDAS 

regression model. The selection of appropriate lags aims to help incorporate Xt variables that have 

higher frequencies in the MIDAS regression model. As a result, we will get the variables Yt and Xt 

with the same frequency. 
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In the Exponential Almon weight function, the last independent variable is expressed as L0/m, 

which has the greatest influence in the model. Similarly, the observations of  L(K−1)/m will correspond 

to the first observation in the quarterly period. 

Suppose ∅ is a set of unknown parameters in the model i.e. ∅ = {β0, β1, θ1, θ2}. The estimated 

parameters will be solved using the Nonlinear Least Square (NLS) method. The form of the function is 

not linear so the iterative method Quasi Newton with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

algorithm is used for estimating the parameters. 

The Quasi-Newton method replaces derivative computing with direct computing functions. The 

quasi-newton method differs in how the approximate Hessian matrix is formed and updated. The 

simplest Quasi-Newton method sets the approximate Hessian matrix as the identity matrix which is a 

symmetric and definite matrix. The most famous way of updating the Hessian matrix is with the BFGS 

algorithm. This algorithm is known for robustness and convergence. The general equation of the 

Quasi-Newton method is [6]: 

 

Br+1sr = yr 
 

where sr = ∅r+1 − ∅r and yr = ∇S(∅r+1) − ∇S(∅r), with ϕ is the set of unknown parameters in the 

model and S(ϕ) is the sum square error, so the update matrix of the Hessian matrix B is 

. 

Br+1 = Br −
Brsr(sr)TBr

(sr)TBrsr
+

yr(yr)T

(sr)Tyr
 

 

3.  Data  

The data used in this study are the Indonesian GDP data based on 2000 Constant Price i.e. 2000Q1 to 

2014Q4 and JCI closing price data as the benchmark index for Indonesian share price of monthly 

period available from January 2000 to December 2014. The Indonesian GDP data is sourced from 

Badan Pusat Statistik, while JCI data is obtained from Yahoo Finance. 

To estimate parameters of the MIDAS regression model, the Indonesian GDP data from 2000Q1 to 

the 2012Q2 and JCI data from January 2000 to June 2012 are used. Furthermore, forecasting of the 

Indonesian GDP values for the next 10 quarters, from 2012Q3 until 2104Q4 is conducted using the 

JCI data from July 2012 until December 2014. 

4.  Empirical Result and Discussion 

To calculate the growth rate of GDP and return of JCI, the following formula is used: 

 

𝑟𝑡 = 𝑙𝑛 (
𝑃𝑡

𝑃𝑡−1
) ∗ 100 

where 

𝑟𝑡   : GDP growth rate or return of JCI 

𝑃𝑡   : value of GDP at time 𝑡 or closing value of JCI at time 𝑡 

𝑃𝑡−1  : value of GDP at time 𝑡 − 1 or closing value of JCI at time 𝑡 − 1 
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Figure 1. Indonesian GDP growth rate and return of JCI in 2000 – 2012 

 

Figure 1. shows that the structure of the Indonesian GDP growth rate and the return of JCI had 

both constant and near zero fluctuations. Therefore, the data were considered stationary. The p-value 

of the Augmented Dickey-Fuller (ADF) test is 0.01, so it can be concluded that the data of Indonesian 

GDP growth rate and the return of JCI is stationary. 

In this empirical study, 10 lags (𝐾 = 10) were selected in fitting the MIDAS regression. The AIC 

and BIC are used to select the optimal lag. 

Table 1. Value of AIC and BIC model of MIDAS regression 

Lag AIC BIC 

Lag 0 – 5 224.6038 233.9598 

Lag 0 – 6 219.2729 228.5236 

Lag 0 – 7 221.4874 230.7381 

Lag 0 – 8 219.2729 228.5236 

Lag 0 – 9 219.8951 229.0383 

 

Table 1. shows the AIC and BIC for several lag categories. The lag 0 – 6 has the smallest AIC and 

BIC values in comparison with other lags. Hence the estimated MIDAS regression function for the 

Indonesian GDP growth rate and the return of JCI is given below, 

 

𝑌�̂� = 1.03 + 0.17 (∑
𝑒𝑥𝑝(3.83𝑘−0.59𝑘2)

∑ 𝑒𝑥𝑝(3.83𝑙−0.59𝑙2)6
𝑙=0

6
𝑘=0 ) 𝐿

𝑘
3⁄ 𝑋𝑡

(3)
. 

4.1.  Comparison of MIDAS Regression Model and Distributed Lag 

In order that the variables 𝑌𝑡 and 𝑋𝑡 have the same frequency, then one solution is finding the average 

of the variable 𝑋𝑡. Then the transformed data are applied to the distributed lag model, using the same 

lag as is in the regression model, lag 0 to lag 6. The distributed lag model using two-degree Almon 

approach is given below, 

𝑌𝑡 = ∑ 𝛽𝑘𝑋𝑡−𝑘

6

𝑘=0

+ 𝜀𝑡 = ∑ ∑ 𝜃𝑗𝑘𝑗𝑋𝑡−𝑘

2

𝑗=0

6

𝑘=0

+ 𝜀𝑡 
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The estimated distributed lag equation for Indonesian GDP growth rate and the return of JCI is 

given below, 

𝑌�̂� = 0.05𝑋𝑡 + 0.02𝑋𝑡−1 + ⋯ + 0.04𝑋𝑡−6. 

 

Table 2. Value of Root Mean Square of Error (RMSE) 

Model RMSE 

MIDAS Regression Model 2.24 

Distributed Lag Model 2.50 

 

Table 2. shows the RMSE for both models. The MIDAS regression model has smaller RMSE than the 

distributed lag. This result of this case study confirms that the MIDAS regression is better for 

modelling data with variables with mixed frequency [2].  

4.2.  Forecasting Indonesian GDP 

The Indonesian GDP from 2012Q3 to 2014Q4 are used to forecast the next 10 months.  

 
Figure 2. Indonesian GDP and forecast result 

 

Figure 2. shows the results of forecasting for the third quarter of 2012 until the fourth quarter of 2014 

increased in every quarter. An increasing of GDP in the next period is expected to be an indicator that 

state productivity is also high and there is an increase in the welfare of its society. The mean absolute 

percentage error (MAPE) of Indonesian GDP forecasting is 1.14%. 

5.  Conclusion  

Based on the research that has been done, we can conclude that the best model that can predict the 

Indonesian GDP is the MIDAS regression model.  This is based on the results that the MIDAS 

regression model produces a smaller error (RMSE) compared to the distributed lag model. 
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